Full Waveform Inversion and the truncated Newton method: quantitative imaging of complex subsurface structures

نویسندگان

  • L. Métivier
  • F. Bretaudeau
  • R. Brossier
  • S. Operto
  • J. Virieux
چکیده

SUMMARY Full Waveform Inversion (FWI) is a powerful tool for quantitative seismic imaging from wide-azimuth seismic data. The method is based on the minimization of the misfit between observed and simulated data. This amounts to the resolution of a large-scale nonlinear minimization problem. The inverse Hessian operator plays a crucial role in this reconstruction process. Accounting accurately for the effect of this operator within the minimization scheme should correct for illumination deficits, restore the amplitude of the subsurface parameters, and help to remove artifacts generated by energetic multiple reflections. Conventional preconditioned gradient-based minimization methods only roughly approximate the effect of this operator. We are interested in this study to another class of minimization methods, named as truncated Newton methods. These methods are based on the computation of the model update through a matrix-free conjugate gradient resolution of the Newton linear system. The aim of this study is to present a feasible implementation of this method for the FWI problem, based on a second-order adjoint state formulation for the computation of Hessian-vector products. We compare this method with the nonlinear conjugate gradient and the l-BFGS method within the context of 2D acoustic frequency FWI for the reconstruction of P-wave velocity models. Two test cases are investigated. The first is the synthetic BP 2004 model, representative of the Gulf Of Mexico geology with high velocity contrasts associated with the presence of salt structures. The second is a 2D real data-set from the Valhall oil field in North sea. These tests emphasize the interesting properties of the truncated Newton method regarding conventional optimization methods within the context of FWI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The truncated Newton method for Full Waveform Inversion

Full Waveform Inversion (FWI) is a promising seismic imaging method. It aims at computing quantitative estimates of the subsurface parameters (bulk wave velocity, shear wave velocity, rock density) from local measurements of the seismic wavefield. Based on a particular wave propagation engine for wavefield estimation, it consists in minimizing iteratively the distance between the predicted wave...

متن کامل

Full Waveform Inversion and the Truncated Newton Method

Full Waveform Inversion (FWI) is a powerful method for reconstructing subsurface parameters from local measurements of the seismic wavefield. This method consists in minimizing a distance between predicted and recorded data. The predicted data is computed as the solution of a wave propagation problem. Conventional numerical methods for the resolution of FWI problems are gradient-based methods, ...

متن کامل

Application of a preconditioned truncated Newton method to Full Waveform Inversion

Full Waveform Inversion (FWI) is a powerful seismic imaging method, based on the iterative minimization of the distance between simulated and recorded wavefields. The inverse Hessian operator related to this misfit function plays an important role in the reconstruction scheme. As conventional methods use direct approximations of this operator, we investigate an alternative optimization scheme: ...

متن کامل

The truncated Newton method for Full Waveform Inversion

Full Waveform Inversion (FWI) methods use generally gradient based method, such as the nonlinear conjugate gradient method or more recently the l-BFGS quasi-Newton method. Several authors have already investigated the possibility of accounting more accurately for the inverse Hessian operator in the minimization scheme through Gauss-Newton or exact Newton algorithms. We propose a general framewo...

متن کامل

GPR Full Waveform Sensitivity Analysis using a FDTD Adjoint Method

Coarse structures involving low electrical contrasts can be profitably imaged by means of cheap and relatively simple methods such as travel time tomography, whereas fine structure involving sub-wavelength detail can only be recovered by inverting full-waveform data. Despite its complexity and high computation costs, full-waveform inversion of GPR data has become a popular tool for high-resolut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013